CONTINUUM OF CARE FOR ACUTE CORONARY SYNDROME:
Optimizing Treatment for ST-Elevation Myocardial Infarction and Non-ST-Elevation Acute Coronary Syndrome

EMERGENCY MEDICINE CARDIAC RESEARCH AND EDUCATION GROUP
www.emcreg.org

COLLABORATE | INVESTIGATE | EDUCATE

© Copyright EMCREG-International 2018
Dear Colleagues,

In this EMCREG-International Monograph, *Continuum of Care for Acute Coronary Syndrome: Optimizing Treatment for STEMI and NSTE-ACS*, you will find a detailed discussion regarding the treatment of this important disease entity, acute coronary syndrome (ACS), which impacts millions of patients across the United States each year. This is a “state of the art” Monograph for emergency physicians, cardiologists, and hospitalists which provides the evidence basis for the optimal approach to treating non-ST-elevation acute coronary syndrome (NSTE-ACS) and ST-elevation myocardial infarction (STEMI).

This Monograph is divided into four sections which starts with the patient at home having symptoms of ACS interacting with the pre-hospital care system and finishing with the patient being discharged from the hospital to home with follow-up and treatment which have a duration of more than 12 months. The first section carefully examines the pre-hospital evaluation and treatment of patients with symptoms consistent with ACS. The pre-hospital care system, using ambulances staffed by paramedics with Advanced Cardiac Life Support capabilities, is responsible for obtaining a 12-lead electrocardiogram, providing monitoring for cardiac dysrhythmias, and initiation of treatment for ACS including aspirin and nitroglycerin. For patients with confirmed STEMI, P2Y12 platelet receptor antagonists such as ticagrelor can be administered in the ambulance. In the second section of this Monograph, the treatment of NSTE-ACS and STEMI is defined for patients with ACS entering the emergency department (ED) by private vehicle or ambulance. The importance of early identification of these patients with the 12-lead electrocardiogram and aggressive assessment by nurses suspecting serious disease promptly places patients on care pathways that include appropriate anticoagulation and treatment with dual antiplatelet therapy. For patients with STEMI presenting to the ED, the goal is to have the patient undergo percutaneous coronary intervention (PCI) in the cardiac catheterization laboratory with a resulting open coronary artery within 90 minutes from first medical contact in the pre-hospital environment or 60 minutes after presentation to the ED. The third section of this Monograph focuses on therapy in the cardiac catheterization laboratory and coronary care unit. The continuation of anticoagulation and antiplatelet therapy from the pre-hospital environment and the ED is supplemented by a detailed discussion of PCI and other therapies necessary to optimize the outcome for these often critically-ill patients. The final section of this Monograph discusses the discharge of patients from the hospital and the appropriate treatment and follow-up care pathways for these individuals. With publication in 2016 of the ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients with Coronary Artery Disease, the prolonged treatment of patients with ACS for 12 months after their initial presentation has become standard practice for these patients to decrease the potential for recurrence.

It is our sincere hope that you will find this EMCREG-International Monograph useful to you in your daily practice as an emergency physician, cardiologist, and hospitalist. This Monograph, reflecting dual input from experts in Emergency Medicine and Cardiology, is a state-of-the-art compilation of data on the treatment of NSTE-ACS and STEMI. The Emergency Medicine Cardiac Research and Education Group (EMCREG)-International was established in 1989 as an emergency medicine cardiovascular and neurovascular organization led by experts from the United States, Canada, and across the globe. We now have Steering Committee members from the US, Canada, Australia, Belgium, Brazil, France, Netherlands, New Zealand, Japan, Singapore, Sweden, and the United Kingdom. Now in our 29th year, we remain committed to providing you with the best educational programs and enduring material pieces possible. In addition to our usual Emergency Physician audience, we now reach out to our colleagues in cardiology, internal medicine, family medicine, hospital medicine, and emergency medicine with our EMCREG-International University of Cincinnati Office of CME accredited symposia and enduring materials. Instructions for obtaining CME from the University of Cincinnati College of Medicine, Office of Continuing Medical Education are available at the conclusion of this February 2018, EMCREG-International Monograph.

Thank you very much for your interest in EMCREG-International educational initiatives and we hope you visit our website (www.emcreg.org) for future educational events and publications.

W. Brian Gibler, MD
President, EMCREG-International
Professor of Emergency Medicine
University of Cincinnati College of Medicine
Cincinnati, Ohio USA
ACCREDITATION AND DESIGNATION OF CREDIT

This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education through the joint providership of the University of Cincinnati and EMCREG-International. The University of Cincinnati is accredited by the ACCME to provide continuing medical education for physicians. The University of Cincinnati designates this enduring material activity for a maximum of 4.0 AMA PRA Category 1 Credits™.

Physicians should claim only the credits commensurate with the extent of their participation in the activity. The opinions expressed during this educational activity are those of the faculty and do not necessarily represent the views of the University of Cincinnati. Participants have an implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The University of Cincinnati College of Medicine is committed to resolving all conflicts of interest issues, which may arise as a result of prospective faculty member’s significant relationships with drug or device manufacturer(s). The University of Cincinnati College of Medicine mandate is to retain only those speakers with financial interests that can be reconciled with the goals and educational integrity of the program.

In accordance with the ACCME Standards for Commercial Support the speakers for this course have been asked to disclose to participants the existence of any financial interest and or relationship(s) (e.g. paid speaker, employee, paid consultant on a board and/or committee for a commercial company) that would potentially affect the objectivity of his/her presentation or whose products or services may be mentioned during their presentation. The following disclosures were made:

PLANNING COMMITTEE AND FACULTY DISCLOSURES:

Planning Committee Members:

<table>
<thead>
<tr>
<th>Name</th>
<th>Disclosures</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Brian Gibler, MD</td>
<td>Advisory Board: AstraZeneca, Entegrion, Intelemage; Shareholder: MyocardioCare, Entegrion</td>
</tr>
<tr>
<td>Bruce Gebhardt, MD</td>
<td>No relevant relationships</td>
</tr>
<tr>
<td>Susan P. Tyler</td>
<td>No relevant relationships</td>
</tr>
<tr>
<td>Barb Forney</td>
<td>No relevant relationships</td>
</tr>
</tbody>
</table>

Speakers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Disclosures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marco Costa, MD, PhD</td>
<td>No relevant relationships</td>
</tr>
<tr>
<td>Christopher Granger, MD</td>
<td>Grants/Research Support Recipient: Armetheon, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Daiichi Sankyo, Duke Clinical Research Institute, FDA, Glaxo SmithKline, Janssen Pharmaceuticals, Medtronic Foundation, Novartis, Pfizer; Consultant: Abbvie, Armetheon, AstraZeneca, Bayer, Boehringer Ingelheim, Boston Scientific, Bristol Myers Squibb, Daiichi Sankyo, Gilead, Glaxo SmithKline, Janssen Pharmaceuticals, Medscape, Medtronic, Merck, NIH, Novartis, Pfizer, Sirtex, Verseon</td>
</tr>
<tr>
<td>James W. Hoekstra, MD</td>
<td>Advisory Board: AstraZeneca; Other Relationships: AstraZeneca, Medscape</td>
</tr>
<tr>
<td>Ankur Kaif, MD</td>
<td>No relevant relationships</td>
</tr>
<tr>
<td>Jeffrey Luk, MD</td>
<td>No relevant relationships</td>
</tr>
<tr>
<td>Tracy E. Macaulay, PharmD</td>
<td>No relevant relationships</td>
</tr>
<tr>
<td>Christopher J. Miller, MD</td>
<td>No relevant relationships</td>
</tr>
<tr>
<td>Sri Madan Mohan, MD</td>
<td>No relevant relationships</td>
</tr>
<tr>
<td>Jennifer Rymer, MD</td>
<td>No relevant relationships</td>
</tr>
<tr>
<td>Khaled M. Ziada, MD</td>
<td>No relevant relationships</td>
</tr>
</tbody>
</table>

Commercial Acknowledgment:

This EMCREG-International Monograph is supported by an educational grant from AstraZeneca Pharmaceuticals.

Disclaimer:

The opinions expressed in the monograph are those of the faculty and do not necessarily represent the views of the University of Cincinnati. The information is presented for the purpose of advancing the attendees’ professional development.

Off Label Disclosure:

Faculty members are required to inform the audience when they are discussing off-label, unapproved uses of devices and drugs. Physicians should consult full prescribing information before using any product mentioned during this educational activity.

Learner Assurance Statement:

The University of Cincinnati is committed to resolving all conflicts of interest issues that could arise as a result of prospective faculty members’ significant relationships with drug or device manufacturer(s). The University of Cincinnati is committed to retaining only those speakers with financial interests that can be reconciled with the goals and educational integrity of the CME activity.

EMCREG-International will not be liable to you or anyone else for any decision made or action taken (or not taken) by you in reliance on these materials. This document does not replace individual physician clinical judgment. Clinical judgment must guide each professional in weighing the benefits of treatment against the risk of toxicity. Doses, indications, and methods of use for products referred to in this program are not necessarily the same as indicated in the package insert and may be derived from the professional literature or other clinical courses. Consult complete prescribing information before administering.
TALE OF CONTENTS: CONTINUUM OF CARE FOR ACUTE CORONARY SYNDROME

PRE-HOSPITAL SYSTEMS OF CARE FOR ST-ELEVATION MYOCARDIAL INFARCTION

Jeffrey Luk, MD
Director, Prehospital and Disaster Medicine, UH Cleveland Medical Center
Assistant Professor, Emergency Medicine, Case Western Reserve University School of Medicine, Cleveland, OH

Ankur Kalra, MD
Assistant Professor, Medicine, Case Western Reserve University School of Medicine, Cleveland, OH

Sri Madan Mohan, MD
Assistant Professor, Medicine, Case Western Reserve University School of Medicine, Cleveland, OH

Marco Costa, MD, PhD
President, Harrington Heart and Vascular Institute, UH Institutes; Professor, Medicine, Case Western Reserve University School of Medicine; Chief Innovation Officer, Director, Interventional Cardiovascular Center, University Hospitals Case Western Reserve University School of Medicine, Cleveland, OH

Christopher J. Miller, MD
Chairman, Department of Emergency Medicine, University Hospitals Cleveland Medical Center
Clinical Professor, Emergency Medicine, Case Western Reserve University School of Medicine, Cleveland, OH

APPROPRIATE EVALUATION AND TREATMENT OF ST-ELEVATION MYOCARDIAL INFARCTION AND NON-ST-ELEVATION ACUTE CORONARY SYNDROME

James W. Hoekstra, MD
Professor, Department of Emergency Medicine; Vice President for Network Clinical Affairs
Wake Forest Baptist Health, Winston-Salem, NC

OPTIMAL CARE FOR PATIENTS WITH ST-ELEVATION MYOCARDIAL INFARCTION AND NON-ST-ELEVATION ACUTE CORONARY SYNDROME IN THE CARDIAC CATHETERIZATION LABORATORY AND CORONARY CARE UNIT

Jennifer Rymer, MD
Cardiology Fellow, Department of Internal Medicine, Duke University School of Medicine, Durham, NC

Christopher B. Granger, MD
Professor of Medicine, Division of Cardiology, Department of Medicine
Director, Cardiac Care Unit, Duke University Medical Center, Durham, NC

DEVELOPING OUTSTANDING POST-DISCHARGE CARE PROGRAMS FOR ACUTE CORONARY SYNDROME

Tracy E. Macaulay, PharmD
Associate Professor of Pharmacy, University of Kentucky College of Medicine
Gill Heart & Vascular Institute, University of Kentucky Healthcare, Lexington, KY

Khaled M. Ziada, MD
Gill Foundation Professor of Interventional Cardiology
Director - Cardiac Catheterization Laboratories and Interventional Fellowship Program
Clinical Chief of Cardiology, Division of Cardiovascular Medicine, University of Kentucky Healthcare, Lexington, KY
PRE-HOSPITAL SYSTEMS OF CARE FOR
ST-ELEVATION MYOCARDIAL INFARCTION

Jeffrey Luk, MD
Director, Prehospital and Disaster Medicine, UH Cleveland Medical Center; Assistant Professor, Emergency Medicine, Case Western Reserve University School of Medicine, Cleveland, OH

Ankur Kalra, MD
Assistant Professor, Medicine, Case Western Reserve University School of Medicine, Cleveland, OH

Sri Madan Mohan, MD
Assistant Professor, Medicine, Case Western Reserve University School of Medicine, Cleveland, OH

Marco Costa, MD, PhD
President, Harrington Heart and Vascular Institute, UH Institutes; Professor, Medicine, Case Western Reserve University School of Medicine; Chief Innovation Officer, Director, Interventional Cardiovascular Center, University Hospitals; Case Western Reserve University School of Medicine, Cleveland, OH

Christopher J. Miller, MD
Chairman, Department of Emergency Medicine, University Hospitals Cleveland Medical Center; Clinical Professor, Emergency Medicine, Case Western Reserve University School of Medicine, Cleveland, OH

Objectives

1. Describe evidence to support prehospital systems of care for ST-elevation myocardial infarctions (STEMIs).
2. Discuss the following elements of a successful prehospital system of care for STEMI:
 a. Prehospital electrocardiograms with wireless data transmission capabilities
 b. Prehospital activation of the cardiac catheterization laboratory
 c. Administration of anti-platelet, anti-thrombin and P2Y12 receptor antagonists in the prehospital environment
 d. Centralized transfer center to coordinate getting the “right patient” to the “right center”
 e. Decentralized, integrated delivery of care through development and deployment of capabilities (e.g., chest pain accredited emergency departments, cardiac catheterization laboratories with primary percutaneous intervention) in a coordinated network
 f. Time-to-mechanical reperfusion with a focused, streamlined, and simplified workflow and protocol to facilitate adherence, decrease variability, and increase speed of care

Introduction

 Approximately 250,000 patients suffer from an ST-elevation myocardial infarction (STEMI) each year in the United States.¹ In 2013, the American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) updated guidelines for the management of STEMI.² A Class I recommendation for regional systems of STEMI care proposed “all communities should create and maintain a regional system of STEMI care that includes assessment and continuous quality improvement of emergency medical services and hospital-based activities.”² In order to achieve this goal, prehospital agencies have multiple responsibilities that include performing a 12-lead electrocardiogram (ECG) at the site of first medical contact (FMC), transporting a STEMI patient directly to a primary percutaneous coronary intervention (PCI)-capable hospital for primary PCI, and coordinating early activation of the cardiac catheterization laboratory (CCL). Together, these interventions facilitate an ideal FMC-to-device time goal of 90 minutes or less. Heterogeneity exists in organizational architecture and clinical practice protocols across systems. Such heterogeneity is complicated by variability in “(1) paramedic training, (2) availability of prehospital ECGs, (3) ability to transmit ECGs to receiving hospitals, (4) catheterization lab activation processes, (5) protocols for bypassing non-PCI capable hospitals with direct transport to PCI-capable hospitals, (6) reperfusion strategy at non-PCI centers, (7) data registry participants, and (8) consistent process for feedback.”³ Accordingly, a single universal design is neither practical nor achievable given variations in prehospital and hospital resources, geography, population density, and transport distances.

To optimize clinical outcomes and overcome barriers that may hinder coordinated, efficient STEMI system care, regional leaders must unify to address such constraints and apply best practices. Competition in areas with multiple hospitals and physician groups can prevent a coordinated effort to achieve reperfusion in the most regionally efficient manner; this may force emergency medical system (EMS) providers to navigate complex referral networks. Development of a robust STEMI system of care requires investment in equipment and personnel for both prehospital agencies and hospitals. Prehospital agencies are challenged by escalating demand; this requires ongoing equipment maintenance as well as consistent education and training programs. Since EMS reimbursement is currently fixed regardless of the level of care, hospitals that agree to serve as PCI centers typically incur the burden of funding STEMI systems. In addition, while STEMI systems improve care processes, their effect on population-wide outcomes remains an active debate. Comprehensive data collection into a single warehouse is needed to assess community-wide outcomes and understand optimal system configurations. Participation in national registries and quality improvement programs is critical to continuous quality improvement. The aforementioned heterogeneity among EMS systems across the country requires that STEMI systems adapt to the local community with regard to referral patterns, inter-facility transfers, and transport distances.³

Nevertheless, it has been shown that when a STEMI system of care is established in a region, both door-to-balloon time and symptom-onset-to-balloon time significantly decrease.⁴ In the mid-1990s, University Hospitals Health System (UHHS) in Cleveland, Ohio integrated the mechanism for prehospital agencies to perform and
Fig. 01: University Hospitals Emergency Medical Services Training and Disaster Preparedness Institute Prehospital Protocol for Acute Coronary Syndrome

Adult Protocol

Universal Patient Care Protocol
- **Oxygen** to maintain SpO₂ > 94%
- **IV / IO Procedure**
 - **12 Lead EKG Procedure - Left** Look for ST Elevation - Transmit to E

Protocol for Acute Coronary Syndrome

No STEMI on EKG - Ischemic Chest Pain
- **Aspirin** 324 mg chew and swallow (81 mg / tab x4)
- **Nitroglycerin (Nitro-Stat)** 0.4 mg SL
 - (If SBP > 110 with IV or SBP > 120 without IV)
 - May give up to 3 total if no pain relief, every 5 minutes

Erectile Dysfunction / Pulmonary HTN drug use within 48 hrs
EMT use requires DIRECT Med Control

Continued Chest Pain? Adequate BP?

Capnography Procedure
- **Fentanyl (Sublimaze)** 25 – 100 mcg IV / IM / IN / IO – SLOW IV – Max 100 mcg
 - If Fentanyl (Sublimaze) is unavailable
 - See Medication Section for Morphine Sulfate

If Cocaine Induced STEMI include
- **Midazolam (Versed)** 2.5 IV / IO 5 mg IN / IM
 - If Midazolam (Versed) is unavailable, See Medication Section for Lorazepam (Ativan)

Transport to appropriate facility
CONTACT receiving facility
CONSULT Medical Direction where indicated

EMT Intervention
- **AEMT Intervention**
- **Paramedic Intervention**
- **Med Control Consult**
Prehospital ECG Transmission

Prehospital ECG transmission is a critical component of any regional STEMI system. Patients with anterior wall STEMI who received emergent PCI have been retrospectively evaluated and categorized based on the mode of transport and pre-arrival STEMI notification. Individuals who were transported by EMS with STEMI notification had the shortest door-to-balloon (DTB) time and also had smaller infarct size compared with those who were transported without STEMI notification. The relationship between patient home distance from a PCI center, prehospital ECG use, and FMC-to-balloon time among STEMI patients using the ACTION-Get with the Guidelines registry has been studied. In this evaluation, prehospital ECGs were associated with a statistically significant 10-minute reduction in FMC-to-balloon time. Moreover, the association between prehospital ECGs and shorter FMC-to-balloon times was attenuated by 0.8 minute for every 10-mile increase in distance from a PCI center. The effect that wireless transmission of prehospital ECGs has on STEMI recognition and reperfusion times has also been evaluated. Patients with prehospital ECGs had a mean transport time to the angioplasty suite and DTB time (33 minutes) compared with 49 minutes and 79 minutes, respectively, for those STEMI patients who did not receive prehospital ECGs. The patients in this study with prehospital STEMI identification and concomitant CCL activation had statistically significant reductions in mean transport time to the angioplasty suite and DTB time (33 minutes and 58 minutes, respectively).

FMC-to-balloon times have been shown to decrease significantly with prehospital ECGs (140 minutes versus 106 minutes, p = 0.01) or prehospital CCL activations (125 minutes versus 98 minutes, p = 0.04). Those individuals who received both prehospital ECGs and prehospital CCL activations had significantly reduced FMC-to-balloon times compared with those who did not (125 minutes versus 91 minutes, p = 0.02). The authors concluded that the “time saving benefits of prehospital ECGs may not be fully realized unless prehospital CCL activations also occur.” When prehospital ECGs were combined with prehospital CCL activation, prehospital providers achieved further reductions in the median FMC-to-balloon time of approximately 24 minutes.

In summary, prehospital ECGs facilitate prompt STEMI identification. The resultant temporal benefits optimize reperfusion strategies and may be complemented by prehospital CCL activation as discussed in the next section.

Prehospital CCL Activation

Prehospital CCL activation has been shown to reduce DTB time, but its effect on mortality for STEMI patients is uncertain. A retrospective cohort study to compare the effects of CCL activation prior to patient arrival versus activation after arrival in the Emergency Department (ED) has been performed. Prehospital CCL activation was associated with a 14-minute shorter mean DTB time compared with ED CCL activation. In this analysis, 93% of prehospital CCL activations met the 90-minute target; ED-based activations had 85% compliance. Patients with prehospital CCL activations in this study, however, had a 1.5% higher in-hospital mortality and a 7.8% higher false-positive activation rate than patients who had an ED-based CCL activation.

The DTB times and compliance with the national 90-minute DTB standard (at the time of the study) among three categories of STEMI patients has been studied: 1) EMS field activations, 2) patients transported by EMS without EMS CCL activation, and 3) walk-in STEMI patients. The mean DTB time was shorter for the EMS field activations when compared with the other two categories. Compliance with the 90-minute benchmark was 100% for the EMS CCL activation group, 72% for prehospital transports without CCL activation, and 68% for walk-in STEMI patients.

Although prehospital CCL activation has been shown to provide process improvements, further refinements can be made. The clinical and ECG characteristics of STEMI patients who do not undergo PCI after prehospital CCL activation have also been evaluated. Increased age, bundle branch block (BBB), elevated heart rate, left ventricular hypertrophy (LVH), and non-white race were all independently associated with an increased likelihood of not undergoing PCI. Out of these five variables, the three with the most significance were any type of BBB (adjusted odds ratio [aOR] 5.66), LVH (aOR 4.63), and non-white race (aOR 3.53). The only variable associated with a higher likelihood of undergoing PCI was the presence of arm pain (aOR 2.94). These findings may lead to improvement of prehospital protocols by optimizing system-based clinical risk stratification protocols while minimizing false positive, or clinically inappropriate, prehospital CCL activations. False positive, or clinically inappropriate, CCL activation is a quality concern to any STEMI center. One study found a total positive and inappropriate CCL activation rate of 14%. The authors of the study found that unwanted CCL activations were more likely to occur in men over 65 years old and patients with a history of coronary artery disease.

Overall, prehospital CCL activation improves DTB metrics. The reperfusion benefits of processes that improve patient progression to the CCL are well established.
PREHOSPITAL SYSTEMS OF CARE FOR ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION

Prehospital P2Y12 Receptor Antagonists

Pre-treatment with P2Y12 receptor antagonists while en route to the CCL for emergent/urgent PCI in acute coronary syndromes (ACS) has potential advantages: lower incidence of intra- and post-procedural stent thrombosis, decreased periprocedural myocardial infarction, and less ancillary use of glycoprotein IIb/IIIa antagonists as a bailout strategy. These potential advantages must be weighed against the potential disadvantages associated with potent anti-platelet agent pre-treatment prior to invasive coronary angiography. These include: 1) increased risk of bleeding events (both coronary artery bypass graft [CABG] and non-CABG-related bleeding), 2) higher risk of procedural bleeding (if access for coronary angiography is femoral), and 3) increased length of stay if patients require CABG (for the effects of potent antiplatelet agents to wear off).12 Pre-treatment with P2Y12 receptor antagonists can occur in the prehospital environment, the ED, the cardiac intensive care unit, or the CCL prior to PCI.13 Clopidogrel, prasugrel, or ticagrelor are the most commonly used P2Y12 receptor antagonists.

Clopidogrel is an irreversible P2Y12 receptor antagonist. The onset of action is dose-dependent (600 mg loading dose versus 300 mg loading dose) and delayed with onset in 2-6 hours.14 These kinetics render clopidogrel less effective if the pre-treatment loading-dose is administered following a diagnostic coronary angiogram immediately before PCI. There is paucity of high-fidelity, randomized controlled data to support the strategy of pre-treatment of ACS patients with clopidogrel. The Clopidogrel for the Reduction of Events During Observation (CREDO) trial evaluated the use of a 300 mg loading dose of clopidogrel pre-treatment versus placebo followed by a 75 mg maintenance dose for a duration of 12 months in the pre-treatment group versus one month in the placebo group in 2,116 patients with ACS.15 The 18% relative risk reduction in the primary end point of death, myocardial infarction or urgent target-vessel revascularization at 28 days was not statistically significantly different between the pre-treatment and no pre-treatment groups. In the patients who received benefit from pre-treatment, a pre-specified sub-group analysis showed a six-hour time lapse between the administration of clopidogrel and performance of PCI. Also, a recent meta-analysis that included studies from the thrombolytic era showed no mortality benefit and a significantly higher bleeding risk with pre-treatment using clopidogrel.16

Prasugrel is another oral, irreversible P2Y12 antagonist. Its onset of action is faster in comparison to clopidogrel (30 minutes-4 hours versus 2-6 hours). The Comparison of Prasugrel at the Time of Percutaneous Coronary Intervention (PCI) or as Pretreatment at the Time of Diagnosis in Patients with Non-ST Elevation Myocardial Infarction (ACCOAST) trial randomized biomarker-positive ACS patients with non-ST elevation myocardial infarction (NSTEMI) to pre-treatment with 30 mg prasugrel before diagnostic angiography and an additional 30 mg at the time of PCI versus placebo before angiography followed by a 60 mg dose before PCI.17 There were no between-group differences with regard to the composite endpoint of cardiovascular death, myocardial infarction, stroke, urgent revascularization, or unplanned use of glycoprotein IIb/IIIa inhibitors through seven days. However, patients in the pre-treatment group had significantly higher major bleeding events (2.6 versus 1.4%; hazard ratio, 1.90; 95% confidence interval [CI], 1.19–3.02 for Thrombolysis in Myocardial Infarction [TIMI] major bleeding) that led to premature termination of the trial by the Data Safety Monitoring Board.

Ticagrelor is a reversible oral P2Y12 antagonist that, unlike clopidogrel and prasugrel, does not require in vivo conversion to an active metabolite. Therefore, it has a significantly faster onset of action (30 minutes-2 hours). Ticagrelor was approved for use in ACS patients (both NSTEMI and STEMI) following data from the PLATElet inhibition and patient Outcomes (PLATO) trial that randomized 18,624 patients to upstream administration of either ticagrelor or clopidogrel (300-600 mg loading dose) prior to any procedure in the CCL.18 In patients who received ticagrelor, there was a significant reduction in the combined primary end-point of death from any vascular cause, myocardial infarction, or stroke (9.8 versus 11.7%; hazard ratio, 0.84; 95% CI, 0.77–0.92), but there was not an increased incidence of major bleeding. Ticagrelor use was, however, associated with an increase in non-CABG-related bleeding events. Administration of upstream ticagrelor is a Class I indication in the current guidelines in patients at high risk of ischemic events.19 The Administration of Ticagrelor in the Cath Lab or in the Ambulance for New ST-Elevation Myocardial Infarction to Open the Coronary Artery (ATLANTIC) trial specifically addressed the question of pre-treatment with ticagrelor in the prehospital environment or the ED versus its administration in the CCL. Since only 1,862 patients were enrolled, the trial was not powered to determine superiority of pre-treatment with regard to clinical endpoints. Surrogates were used to assess between-group differences: electrocardiographic resolution of ST-elevation greater than 70% prior to PCI and angiographic lack of TIMI III flow, respectively. There were no significant between-group differences in the co-primary surrogates of ST-segment resolution or TIMI III flow.20

A System-Based Approach

Effective regional STEMI care demands: 1) a sophisticated partnership between prehospital agencies, hospitals within the system, and providers across multiple disciplines; 2) continuous review of every echelon’s adherence to established guidelines through a robust, multi-disciplinary quality assurance process; 3) frequent re-examination of the evidence to update guidelines accordingly; 4) a strategy to ensure continuing education; and 5) feedback for their prehospital providers. As systems seek to streamline patient movement from the field to the CCL, their leadership must develop detailed guidelines for prehospital CCL activation to minimize clinical over-triage.
In the UHHS, the integration of the UH Center for Patient Flow Management (CPFM) provides 24/7 navigation support to ensure the right patient is transported to the right facility. The CPMF connects all providers in the patient’s care continuum to mitigate over-triage through visualization of the prehospital ECG and communication between all providers. As the “eyes in the sky”, the CPMF oversees patient movement throughout the system of 15 hospitals and optimizes the deployment of personnel resources and hospital capabilities to meet the needs of each patient. Coupled with coordinated oversight of a simplified “no-drips” STEMI protocol by prehospital agencies, UHHS patients have distributed access to PCI at community hospitals with continuous high quality as close to their home as possible (Figure 2).

The UHHS STEMI protocol is one example of an integrated, multi-disciplinary approach. It optimizes standardized prehospital clinical care as outlined in Figures 1 and 2. Notably, given the broad geographic base, some clinical situations preclude a 90-minute FMC-to-device time. The UHHS STEMI protocol therefore also includes a simplified thrombolysis transport protocol (Figure 3).

Algorithm PDFs available online: www.emcrg.org/continuum
References

APPROPRIATE EVALUATION AND TREATMENT OF ST-ELEVATION MYOCARDIAL INFARCTION AND NON-ST-ELEVATION ACUTE CORONARY SYNDROME

James W. Hoekstra, MD
Professor, Department of Emergency Medicine
Vice President for Network Clinical Affairs
Wake Forest Baptist Health
Winston-Salem, NC

Objectives

1. Describe the initial prehospital and Emergency Department treatment of non-ST-elevation acute coronary syndrome (NSTE–ACS) and ST-elevation myocardial infarction (STEMI).
2. Explain the utilization of the electrocardiogram, history and physical, and serum markers to classify patients as STEMI or NSTE-ACS.
3. Explain the clinical protocols for the treatment of STEMI and NSTE-ACS in the Emergency Department.
4. Summarize the appropriate application of oral antiplatelet agents in NSTE-ACS and STEMI, according to the recommendations of the applicable American College of Cardiology Foundation/American Heart Association guidelines.

Introduction

ST-elevation myocardial infarction (STEMI) and non-ST-elevation acute coronary syndrome (NSTE-ACS) can cause significant morbidity and mortality if not treated aggressively and appropriately. Delay in the appropriate treatment of either entity can result in adverse outcomes for patients who present to the Emergency Department (ED) for care. The 2013 American College of Cardiology Foundation/American Heart Association (ACCF/AHA) Guidelines for Management of STEMI¹ and the 2014 American Heart Association/American College of Cardiology (AHA/ACC) Guidelines for the Management of Patients with NSTE-ACS² outline the recommended acute care therapies for these two patient populations. This manuscript focuses on the early triage and treatment of STEMI and NSTE-ACS, especially as it relates to dual antiplatelet therapy in the ED and cardiac catheterization laboratory. The most recent 2016 ACC/AHA Guidelines for the Duration of Dual Anti-platelet Therapy³ clarifies the recommendations on the long term therapy for STEMI and NSTE-ACS patients. The three guidelines were promulgated to standardize and optimize the evaluation, diagnosis, and management of patients with STEMI and NSTE-ACS and to provide physicians with a framework for clinical decision-making. They have become the cornerstone of many ED protocols for the treatment of STEMI and NSTE-ACS and are crucial to providing efficient care in the ED and seamless transitions for patients to the cardiac catheterization laboratory or coronary care unit (CCU). In addition, the guidelines and new clinical trials data support changes in the dosing and application of antiplatelet therapy in the treatment of STEMI and NSTE-ACS.

STEMI versus NSTE-ACS: Initial Triage and Risk Stratification

The pathophysiology of acute coronary syndrome (ACS) is initiated by the endothelial rupture of an atherosclerotic coronary artery plaque. Plaque rupture leads to platelet aggregation, platelet activation, fibrin deposition, and downstream myocardial ischemia and necrosis. Especially in STEMI, downstream necrosis is time dependent, with tissue ischemia and localized infarction progressing to a wavefront of necrosis developing from the subendocardium and extending transmurally outward with time. The longer the period of necrosis, the higher the chance of heart failure, patient morbidity, and death. As such, rapid diagnosis and treatment are important in patients with STEMI.

In patients with chest pain and presumed coronary syndromes, the first step in triage is obtaining a 12-lead electrocardiogram (ECG) within ten minutes after medical provider contact. This test can be performed in the field by trained emergency medical technicians (EMTs) or paramedics, in the ED triage area by hospital staff, or at the bedside in the ED by nursing. The initial choice of treatment pathways between STEMI and NSTEMI is based on the presence of ST-elevation or a new left bundle branch block on the 12-lead ECG. If these are present, the patient follows the STEMI pathway. If these findings are not present, the patient initially follows the NSTE-ACS pathway (Figure 1). It is worth noting that the ECG is only a snapshot in time, and that often serial ECGs are needed to detect evolving STEMI or evolving ST-depression in patients with ACS. In patients with clinical instability, fluctuating or severe pain, or a high index of clinical suspicion, serial ECGs are indicated.²

FIGURE 01

Initial Electrocardiogram as a Triage Tool in Patients with Chest Pain

12-Lead ECG as Initial Triage Tool in Patients with Chest Pain

~ 2 million patients admitted to CCU or telemetry annually

ST-elevation MI

250,000

Non-ST-elevation ACS

750,000

ECG: electrocardiogram; MI: myocardial infarction; ACS: acute coronary syndrome; CCU: coronary care unit
Treatment of STEMI

Time is of the essence in the care of patients with STEMI. Care occurs across the continuum, from the patient’s bedside at home, to emergency medical systems (EMS) transport to the ED, and finally to the cardiac catheterization laboratory. The care of a patient with STEMI is influenced by patient education (recognition of symptoms), EMS dispatch (availability of 911 capability), EMS access and capability (availability of field ECG and rapid response/transport), EMS communication (ED or cardiac catheterization laboratory activation), ED nursing (throughput and patient stabilization), emergency physician care (stabilization, activation of the cardiac catheterization laboratory, appropriate therapy), cardiac catheterization laboratory staff (patient preparation and equipment), and interventional cardiology (rapid and skilled percutaneous coronary intervention). Coordination across all of these groups to achieve a first medical contact (FMC) to balloon time of 90 minutes or less can be a formidable task. The ACCF/AHA Guidelines for the treatment of STEMI recommend that “all communities should create and maintain a regional system of STEMI care” that includes assessment and continuous quality improvement of EMS and hospital-based activities.

Reperfusion is the cornerstone of appropriate therapy in STEMI. Emergency physicians who work in percutaneous coronary intervention (PCI) capable hospitals should choose PCI as their reperfusion methodology of choice. Physicians at rural hospitals, where patient transfer to a PCI capable hospital is prolonged, should choose timely fibrinolytic therapy as their reperfusion method of choice. There is a distinct gray zone, however, in patients for whom the choice must be made between timely fibrinolysis versus patient transfer for “minimally or moderately delayed” primary PCI. The emergency physician must decide between fibrinolysis within 30 minutes of FMC versus transfer for PCI, knowing that the chance of a FMC to balloon time in the setting of an inter-hospital transfer within 90 minutes is remote.

The choice of PCI versus fibrinolytic therapy will determine the appropriate antithrombin and antiplatelet regimens in STEMI. All STEMI patients should receive aspirin 325 mg at initial patient contact, preferably in the prehospital arena and perhaps even before an ECG is done (IA recommendation). In addition, once the reperfusion pathway is chosen, patients should receive a second antiplatelet agent (dual antiplatelet therapy) as well as an antithrombin in the ED or in the cardiac catheterization laboratory (IB recommendation). The choices for antiplatelet and antithrombin therapy are also dependent on the reperfusion methodology and are illustrated in Figure 3. Whereas aspirin should be administered immediately, the addition of an antithrombin and a second antiplatelet can occur in the ED or in the catheterization laboratory at the time of reperfusion. If there is any delay to reperfusion therapy, however, they should be administered as soon as possible in the ED.

FIGURE 02

Time to Treatment is Critical in ST-elevation Myocardial Infarction

- **Call 9-1-1**
 - Call fast
- **Onset of STEMI symptoms**
 - 9-1-1 EMS dispatch
- **EMS on scene**
 - Encourage 12-lead ECGs
 - Consider prehospital fibrinolytic if capable and EMS-to-needle time within 30 min
- **EMS triage plan**
 - Not PCI capable
 - PCI capable
- **Inter-hospital transfer**
- **Not PCI capable**
 - Door-to-needle within 30 min
- **PCI capable**
 - Door-to-balloon within 90 min
- **Prehospital fibrinolysis**
 - EMS-to-needle time within 30 min
- **EMS transport**
 - EMS transport
 - EMS-to-balloon time within 90 min
- **Patient self-transport**
 - Hospital door-to-balloon within 90 min

GOALS

- **5 min**
 - EMS Dispatch
 - Prehospital fibrinolysis
 - EMS-to-needle time within 30 min
- **8 min**
 - EMS Transport
 - EMS transport
 - EMS-to-balloon time within 90 min

Golden Hour = First 60 min

- Time to reperfusion is a critical determinant of the extent of myocardial damage and clinical outcomes in patients with STEMI.
- Key factors in STEMI care are rapid, accurate diagnosis and keeping the encounter time-to-reperfusion as short as possible.

CONTINUUM OF CARE FOR ACUTE CORONARY SYNDROME: APPROPRIATE EVALUATION AND TREATMENT OF ST-ELEVATION MYOCARDIAL INFARCTION AND NON-ST-ELEVATION ACUTE CORONARY SYNDROME

Ticagrelor was evaluated in the PLATElet inhibition and patient Outcomes (PLATO) trial, which enrolled 18,624 patients with either STEMI or NSTE-ACS destined for the cardiac catheterization laboratory. Patients in PLATO were enrolled and randomized upstream, prior to their coronary angiograms. Approximately 70% of the patients in PLATO underwent PCI, and the rest were treated with coronary artery bypass grafting (CABG), medical therapy, or no therapy. The primary outcome for the trial was death from vascular causes, myocardial infarction (MI), and stroke at one year. Ticagrelor treatment resulted in a 16% reduction in this triple endpoint of death from vascular causes, MI, and stroke in ACS patients at one year – 11.7% in the clopidogrel treated patients versus 9.8% in the ticagrelor treated patients (hazard ratio 0.84; 95% confidence interval [CI], 0.77-0.92, p < 0.001). In addition, cardiac mortality was reduced in the ticagrelor group at one year from 5.1% to 4.0% (hazard ratio 0.79; 95% CI, 0.69-0.91). Total major bleeding, transfusions, and life-threatening bleeding were not significantly different between groups, but when non-CABG bleeding alone was analyzed, there was a significant increase in non-CABG bleeding with ticagrelor (4.5% versus 3.8%, p =0.03). This was offset by a non-significant decrease in CABG bleeding with ticagrelor (7.4% versus 7.9%, p=NS). Despite theoretical advantages of a short half-life antiplatelet agent in patients proceeding to CABG after angiogram, there were no significant reductions in bleeding in the CABG cohort in PLATO. Ticagrelor has received a IB recommendation for NSTE-ACS, whether treated with invasive or conservative pathways. The PLATO trial also enrolled 7,026 patients with STEMI, randomized to ticagrelor versus clopidogrel. In these STEMI patients, ticagrelor resulted in a 16% relative risk reduction in death from vascular causes, MI, and stroke at one year compared to clopidogrel - 10.1% in the clopidogrel treated patients versus 8.5% in the ticagrelor treated patients (hazard ratio 0.84; 95% CI, 0.72-0.98). Bleeding rates in the STEMI patients were similar between ticagrelor and clopidogrel, making ticagrelor a preferred option in ED treatment of STEMI prior to primary PCI (IB recommendation).
APPROPRIATE EVALUATION AND TREATMENT OF ST-ELEVATION MYOCARDIAL INFARCTION AND NON-ST-ELEVATION ACUTE CORONARY SYNDROME

FIGURE 04 ACCF/AHA 2014 Non-ST-Elevation Acute Coronary Syndrome Antiplatelet Therapy by Treatment Strategy

NSSTE-ACS: Definite or Likely

Ischemia-Guided Strategy

Initiate DAPT and Anticoagulant Therapy
1. ASA (Class I; LOE: A)
2. P2Y₁₉ inhibitor (in addition to ASA) (Class I; LOE: B):
 - Clopidogrel or Ticagrelor
3. Anticoagulant
 - UFH (Class I; LOE: B) or
 - Enoxaparin (Class I; LOE: A) or
 - Fondaparinux† (Class I; LOE: B)

Early Invasive Strategy

Initiate DAPT and Anticoagulant Therapy
1. ASA (Class I; LOE: A)
2. P2Y₁₉ inhibitor (in addition to ASA) (Class I; LOE: B):
 - Clopidogrel or Ticagrelor
3. Anticoagulant
 - UFH (Class I; LOE: B) or
 - Enoxaparin (Class I; LOE: A) or
 - Fondaparinux† (Class I; LOE: B) or
 - Bivalirudin (Class I; LOE: B)

Can consider GPI in addition to ASA and P2Y₁₉ inhibitor in high-risk (e.g., troponin positive) patients (Class Ib; LOE: B)
 - Eptifibatide
 - Tirofiban

Therapy effective

Medical therapy chosen based on cath findings

Therapy ineffective

PCI with Stenting
Initiate / continue antiplatelet and anticoagulant therapy
1. ASA (Class I; LOE: A)
2. P2Y₁₉ inhibitor (in addition to ASA):
 - Clopidogrel (Class I; LOE: B) or
 - Prasugrel (Class I; LOE: B) or
 - Ticagrelor (Class I; LOE: B)
3. GPI (if not treated with bivalirudin at time of PCI)
 - High-risk feature, not adequately pretreated with clopidogrel (Class IIa; LOE: B)
 - High-risk feature adequately pretreated with clopidogrel (Class IIIa; LOE: B)
4. Anticoagulant
 - Enoxaparin (Class I; LOE: A) or
 - Bivalirudin (Class I; LOE: B) or
 - Fondaparinux† as the sole anticoagulant (Class III: Harm; LOE B) or
 - UFH (Class I; LOE: B)

CABG
Initiate / continue ASA therapy and discontinue P2Y₁₉ and/or GPI therapy
1. ASA (Class I; LOE: A)
2. Discontinue clopidogrel/ticagrelor 5 days before, and prasugrel at least 7 days before elective CABG
3. Discontinue clopidogrel/ticagrelor up to 24 h before urgent CABG (Class I; LOE: B)
 May perform urgent CABG < 5 d after clopidogrel/ticagrelor and < 7 d after prasugrel discontinued
4. Discontinue eptifibatide/tirofiban at least 24 h before, and abciximab ≥ 12 h before CABG (Class I; LOE: B)

Late Hospital / Posthospital Care
1. ASA indefinitely (Class I; LOE: A)
2. P2Y₁₉ inhibitor (clopidogrel or ticagrelor), in addition to ASA, up to 12 mo if medically treated (Class I; LOE: B)
3. P2Y₁₉ inhibitor (clopidogrel, prasugrel, or ticagrelor), in addition to ASA, at least 12 mo if treated with coronary stenting (Class I; LOE: B)

†In patients who have been treated with fondaparinux (as upfront therapy) who are undergoing PCI, an additional anticoagulant with anti-IIa activity should be administered at the time of PCI because of the risk of catheter thrombosis.

Prasugrel was evaluated in the TIMI 38 trial, in which 13,608 patients with either STEMI or moderate to high-risk NSTE-ACS and planned intervention for a known intracoronary lesion were randomized in a double blind fashion to receive either a 300 mg load of clopidogrel and 75 mg per day, or a 60 mg load of prasugrel and 10 mg a day, beginning at the time of catheterization and continuing for one year.⁶ It should be noted that this randomization occurred after the initial coronary angiogram. Prasugrel was not evaluated upstream in NSTE-ACS, but only in the cardiac catheterization laboratory after the coronary anatomy was defined. At one-year, prasugrel was associated with a 19% reduction in death, MI, and stroke (hazard ratio 0.81; 95% CI, 0.73-0.90) compared to clopidogrel. Bleeding was increased in the prasugrel group, however, with an overall 0.6% increase in major bleeding (2.4% versus 1.8%, hazard ratio 1.32; 95% CI, 1.03-1.68). Fatal bleeding, transfusions, and CABG bleeding were all significantly higher in the prasugrel group, and bleeding was especially higher in the elderly (>75 years old), in patients with low body weight (weight < 60 kg), and in patients with prior transient ischemic attack (TIA) or cerebrovascular accident. There was a definite trade-off noted between increased efficacy and increased bleeding, prompting the authors of the study to caution against the use of prasugrel in these high-risk groups. The lack of any pre-catheterization medical management in the TIMI 38 trial, and the high rate of CABG-related

FIGURE 05 Master Treatment Algorithm for Duration of P2Y12 Inhibitor Therapy In Patients with CAD Treated with DAPT

Colors correspond to Class of Recommendation. Clopidogrel is the only currently used P2Y12 inhibitor studied in patients with SIHD undergoing PCI. Aspirin therapy is almost always continued indefinitely in patients with CAD. Patients with a history of ACS >1 year prior who have since remained free of recurrent ACS are considered to have transitioned to SIHD. In patients treated with DAPT after DES implantation who develop a high risk of bleeding (eg, treatment with oral anticoagulant therapy), are at high risk of severe bleeding complication (eg, major intracranial surgery), or develop significant overt bleeding, discontinuation of P2Y12 inhibitor therapy after three months for SIHD or after six months for ACS may be reasonable. Arrows at the bottom of the figure denote that the optimal duration of prolonged DAPT is not established. BMS, bare metal stent; CABG, coronary artery bypass graft surgery; CAD, coronary artery disease; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; Hx, history; Lytic, fibrinolytic therapy; MI: myocardial infarction; PCI: percutaneous coronary intervention; SIHD, stable ischemic heart disease; and S/P, status post. The 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease. Reprinted with permission Circulation.2016;134:e123-e155 ©2016 American Heart Association, Inc.
bleeding, makes this drug less applicable in the ED setting for patients with NSTE-ACS.²

The TRial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel (TRITON-TIMI 38) trial also enrolled 3,534 patients with STEMI treated with either primary or secondary PCI.⁹ In these patients, prasugrel 60 mg resulted in a 19% relative risk reduction in death, MI, and stroke at 15 months (hazard ratio 0.81; 95% CI, 0.66-0.99) compared to clopidogrel 300 mg. Bleeding still trended worse in the prasugrel arm, but there were no statistically significant differences in bleeding, including life threatening bleeding. Unlike the NSTE-ACS population in TRITON, the STEMI patients were often randomized to prasugrel upstream, prior to angiography. As such, these results support the use of prasugrel in the ED in STEMI patients.

The guidelines recommend the use of prasugrel 60 mg orally as a loading dose at the time of primary PCI for STEMI (IB recommendation).¹ They also give prasugrel a IB recommendation as a loading dose at the time of PCI for NSTE-ACS, except in patients already on clopidogrel.² The guidelines also include a Class III recommendation (harmful) for the use of prasugrel in patients with age >75 years old, weight <60 kg, or a prior history of TIA/Stroke.² Emergency physicians should be aware of prasugrel’s mechanism of action, pharmacology, and clinical application in the treatment of these patients.

As an alternative to P2Y12 inhibitors for platelets, intravenous glycoprotein IIb/IIIa inhibitors (GPI) can be utilized in the cardiac catheterization laboratory at the discretion of the cardiologist. The GPIs provide instant onset high potency antiplatelet inhibition for patients with high risk lesions in STEMI and NSTE-ACS. They are not presently recommended upstream in either STEMI or NSTE-ACS due to associated bleeding risk (IIbB recommendation).³ They are effective, however, if initiated in the cardiac catheterization laboratory for both STEMI and NSTE-ACS (IA recommendation).¹,² In addition, the GP IIb/IIIa platelet receptor antagonists should be followed long-term with oral antiplatelet therapy, typically with a P2Y12 inhibitor.

Duration of Oral Dual Antiplatelet Therapy

The 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy provides significantly more detail on duration of antiplatelet therapy in an area that has been very controversial (Figure 5).³ Specifically, it includes the results of the Dual Antiplatelet Therapy Study,¹⁰ which was specifically designed to answer questions about duration of dual antiplatelet therapy, especially in patients who receive drug eluting stents. After NSTE-ACS or STEMI, treated either medically or with PCI, the guidelines recommend aspirin 81 mg per day indefinitely (IA recommendation). Dual antiplatelet therapy with aspirin and a P2Y12 inhibitor is given a Class I recommendation (should be given) for a minimum of 6-12 months, and a Class IIb recommendation (should be considered) for prolonged therapy thereafter.³ In patients with high ischemic risk and lower bleeding risk, dual antiplatelet therapy can be considered for a longer duration. In those with higher bleeding risk, it is probably not as beneficial. The Dual Antiplatelet Therapy (DAPT) Study introduced the DAPT score to estimate bleeding risk. Patients with a DAPT score over two will likely benefit from prolonged therapy, while those with a DAPT score less than two should receive a more limited therapy duration.¹⁰

Conclusion

STEMI and NSTE-ACS remain high prevalence, high impact diagnoses in the prehospital arena and in the ED. Emergency physicians should treat these patients aggressively with timely therapy to reduce mortality and morbidity. It is imperative for ED physicians to be knowledgeable about the recommended therapies for these conditions in the ED, including the appropriate and aggressive application of dual antiplatelet therapy.

References

Optimal care for patients presenting with STEMI includes careful consideration of antithrombotic therapy before and during PCI, starting with loading the patient with aspirin and a P2Y12 inhibitor, such as clopidogrel, prasugrel, or ticagrelor, prior to arrival in the catheterization laboratory (often in the Emergency Department) or upon arrival to the catheterization laboratory. Higher potency P2Y12 inhibitors, such as ticagrelor and prasugrel, are favored over clopidogrel in eligible patients. The TRial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel (TRITON-TIMI 38) trial demonstrated reduced 30-day death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke with the use of prasugrel over clopidogrel. However, it is important to note that some patients should not be considered for prasugrel therapy. Specifically, patients with a history of stroke or transient ischemic attack, patients ≥75 years old, and patients <60 kg should not be loaded with prasugrel. In the PLATelet inhibition and patient Outcomes (PLATO) trial, use of ticagrelor resulted in improved outcomes in the primary PCI group with regards to death and stent thrombosis compared to clopidogrel. Patients with a history of intracranial bleeding, however, should not be loaded with ticagrelor, and ticagrelor should be used cautiously in patients with second or third degree heart block, as well as sick sinus syndrome. For patients who have received clopidogrel prior to arriving in the catheterization laboratory or cardiac intensive care unit, it is reasonable to switch to ticagrelor, simply by using the initial loading dose (180 mg) followed by 90 mg twice a day.

Although it is estimated that roughly 25-30% of the population may carry the CYP2C19*2 allele that results in lower levels of the active metabolite of clopidogrel, there has been controversy in the literature regarding whether this allele is associated with adverse outcomes, including early stent thrombosis. Additional subgroups may have varied responses to clopidogrel, including patients with the ABCB1 polymorphism, diabetics, and obese patients. It is not currently recommended that patients presenting with STEMI routinely undergo the VerifyNow-P2Y12 testing for appropriate platelet inhibition with clopidogrel, but this testing may be considered if patients present with stent thrombosis after appropriate clopidogrel compliance.

Access Considerations

Reduced mortality rates, likely because of reductions in bleeding, have been observed with the use of transradial access for patients presenting with STEMI. In the Radial Versus Femoral Randomized...
Investigation in ST-Elevation Acute Coronary Syndrome (RIFLE-STEACS) trial, which investigated outcomes in the STEMI population, the composite outcomes of net adverse clinical events and cardiovascular mortality were significantly reduced in the transradial versus the transfemoral arm. Additionally, in an analysis of the Radial Vs femoral Randomized Investigation of angiography and interventions (RADIAL-AMI) trial comparing outcomes of transradial versus transfemoral access between NSTE-ACS and STEMI patients, the primary composite outcome of death, myocardial infarction (MI), stroke, and non-coronary artery bypass grafting (CABG) related major bleeding was significantly reduced in the STEMI subgroup but not the NSTE-ACS subgroup. In the Minimizing Adverse Haemorrhagic Events by TRansradial Access Site and Systemic Implementation of angioX (MATRIX Access) trial, there was a borderline significant reduction in all-cause mortality with the use of transradial access, regardless of ACS type. For the population of patients presenting with STEMI, transradial access is now recommended as a Class I level of evidence A recommendation in the European Society of Cardiology (ESC) guidelines if performed by an experienced radial operator. Table 1 illustrates the major randomized trials supporting the use of transradial access in ACS overall, STEMI, and NSTEMI.

Culprit Artery Only versus Multivessel PCI

The 2013 American College of Cardiology Foundation/American Heart Association (ACCF/AHA) Guideline for the Management of STEMI gave PCI of a non-infarct artery at the time of primary PCI in a hemodynamically stable patient presenting with STEMI a class III recommendation. This recommendation was based on observational studies and meta-analyses suggesting that patients with multivessel PCI at the time of primary PCI trended towards worse outcomes, and were exposed to longer procedural times with greater risk of contrast nephropathy and stent thromboses. However, with new data from several randomized control trials (RCTs), the 2015 ACC/AHA/Society for Cardiology and Interventions (SCAI) Focused Update on Primary PCI for Patients with STEMI updated the recommendation for multivessel PCI at the time of primary PCI or as a staged procedure to a Class IIb recommendation, and the 2017 ESC guidelines give a IIa recommendation for non-culprit stenting prior to hospital discharge.

The change in recommendation for multivessel PCI in the recent guidelines is based on several RCTs, including the Complete Versus Culprit-Lesion Only Primary PCI (CvLPRIT) and Preventive Angioplasty in Acute Myocardial Infarction (PRAMI) trials. In the CvLPRIT trial, 296 patients with STEMI were randomized to infarct artery and non-infarct artery PCI within the index hospitalization versus infarct artery-only PCI. The primary endpoint, a composite of all-cause death, recurrent MI, heart failure, and ischemia-driven revascularization within 12 months, occurred in 10% of the complete revascularization group versus 21.2% of the infarct-only revascularization group (p=0.009). In the PRAMI trial, the composite endpoint of cardiac death, nonfatal MI, or refractory angina

Table 1

Summary of Major Trials of Radial Access in Acute Coronary Syndrome

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Number of Patients</th>
<th>Primary Endpoints</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVAL (2011)</td>
<td>3,507</td>
<td>30-day composite of death, MI, stroke, or non-CABG-related major bleeding</td>
<td>No difference in primary endpoint between radial and femoral access</td>
</tr>
<tr>
<td>MATRIX (2015)</td>
<td>8,404</td>
<td>30-day MACE and NACE</td>
<td>30-day MACE (8.8% vs. 10.3%, p=0.0307) and NACE (9.8% vs. 11.7%, p=0.0092) reduced with radial access</td>
</tr>
<tr>
<td>SAFE-PCI (2015)</td>
<td>1,787</td>
<td>Primary efficacy endpoint: BARC type 2, 3, or 5 bleeding or vascular complications requiring intervention; primary feasibility endpoint: access site crossover</td>
<td>Trial terminated early due to lower than expected event rate; no significant difference in primary efficacy endpoint; femoral access associated with lower access site crossover (p=0.01)</td>
</tr>
<tr>
<td>RADIAL-AMI (2005)</td>
<td>50</td>
<td>Reperfusion time, major bleeding, access site complications</td>
<td>Femoral access associated with shorter reperfusion time; no difference in access site complications or major bleeding</td>
</tr>
<tr>
<td>RIFLE-STEACS (2012)</td>
<td>1,001</td>
<td>30-day rate of NACE, defined as a composite of cardiac death, stroke, myocardial infarction, target lesion revascularization, and bleeding</td>
<td>30-day NACE (13.6% vs. 21.0%, p=0.003), radial vs. femoral arms</td>
</tr>
<tr>
<td>STEMI-RADIAL (2014)</td>
<td>707</td>
<td>30-day major bleeding and vascular access complications</td>
<td>30-day major bleeding and vascular access complications: 1.4% vs. 7.2% (p=0.0001), radial vs. femoral arms</td>
</tr>
</tbody>
</table>

Abbreviations – MI: myocardial infarction; CABG: coronary artery bypass grafting; MACE: major adverse cardiovascular events; NACE: net adverse clinical events; BARC: Bleeding Academic Research Consortium

Trials – RIVAL: Radial Vs femoral access for coronary intervention; MATRIX: Minimizing Adverse Haemorrhagic Events by TRansradial Access Site and Systemic Implementation of angioX; SAFE-PCI: Study of Access Site of enhancement for Percutaneous Coronary Intervention; RADIAL-AMI: Radial versus femoral access for emergent percutaneous coronary intervention with adjunct glycoprotein IIb/IIIa inhibition in acute myocardial infarction; RIFLE-STEACS: Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome; STEMI-RADIAL: Radial vs. Femoral Approach in Primary Percutaneous Coronary Intervention
occurred in 9% of STEMI patients undergoing multivessel primary PCI versus 22% with infarct artery-only PCI (p<0.001). Although not all hemodynamically stable patients presenting with STEMI and multivessel disease should undergo multivessel or staged PCI within the index hospitalization, it is now appropriate to consider it. Table 2 provides recommendations for PCI based on the 2015 ACC/AHA STEMI Guidelines.

TABLE 02

<table>
<thead>
<tr>
<th>Changes in Guideline Recommendations for Multivessel vs. Culprit Artery-Only Percutaneous Coronary Intervention in Patients with ST-Elevation Myocardial Infarction from the 2015 Focused Update to the STEMI Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 STEMI Guideline Recommendations</td>
</tr>
<tr>
<td>Class III: Harm</td>
</tr>
<tr>
<td>PCI should not be performed in a non-infarct artery at the time of primary PCI in patients with STEMI who are hemodynamically stable</td>
</tr>
<tr>
<td>2015 STEMI Guideline Recommendations</td>
</tr>
<tr>
<td>Class IIb: Weak</td>
</tr>
<tr>
<td>PCI of a non-infarct artery may be considered in selected patients with STEMI and multi-vessel disease who are hemodynamically stable, either at the time of primary PCI or as a planned staged procedure</td>
</tr>
<tr>
<td>Changes in Recommendations</td>
</tr>
<tr>
<td>Recommendation changed from Class III to Class IIb. Multi-vessel PCI can occur at the time of culprit artery PCI or later in the hospital course</td>
</tr>
</tbody>
</table>

Cardiogenic Shock

The most important opportunity to improve the care of patients with acute MI complicated by cardiogenic shock is early revascularization, including PCI of the infarct culprit artery. For patients with cardiogenic shock, there is higher mortality with a routine approach of performing non-culprit PCI of all significant lesions, so it should not be performed in that setting.¹⁸ Other aspects of management of cardiogenic shock, including use of inotropes and mechanical support, are discussed in detail in a recent comprehensive review.¹⁹

Aspiration Thrombectomy

The 2013 ACCF/AHA Guideline for the Management of STEMI gave a Class IIa recommendation for routine manual aspiration prior to primary PCI in patients presenting with STEMI¹⁵ but this has been changed to a Class III level of evidence A recommendation in the 2017 ESC Guidelines. This is due to recent evidence from two RCTs that have demonstrated no difference in outcomes for those patients undergoing aspiration thrombectomy. The Thrombus Aspiration During ST-Segment Elevation Myocardial Infarction (TASTE) trial enrolled 7,244 patients and found no differences in 30-day or 1-year death, reinfarction, stent thrombosis, target lesion revascularization, or a composite of major adverse cardiac events between those patients who received aspiration thrombectomy prior to primary PCI versus primary PCI only.²⁰ The Trial of Routine Aspiration Thrombectomy With PCI Versus PCI Alone in Patients With STEMI (TOTAL) trial enrolled over 10,000 patients with similar results to the TASTE trial, and a statistically significant trend towards an increased rate of stroke in the aspiration thrombectomy group.²¹ Thus, routine aspiration should not be performed.

Optimal Care for the Patient with NSTEMI in the Cardiac Catheterization Laboratory

Whereas the timing of revascularization for patients with STEMI usually involves immediate coronary angiography, the timing of revascularization for patients with NSTEMI may vary with the risk profile of the patient. The 2014 AHA/ACC Guidelines for the Management of Patients with Non-ST-Elevation Acute Coronary Syndrome recommends an ischemia-driven approach if the patient is low risk (i.e., Thrombolysis in Myocardial Infarction [TIMI] score 0 or 1 or GRACE score <109) or an early invasive approach (i.e., coronary angiography within 24 hours) for patients with ongoing changes in troponin or GRACE score >140 (estimated rate of in-hospital death > 3%).²² Prior to deciding upon the strategy of coronary angiography, the patient’s comorbidities should be considered and, if extensive (e.g., advanced chronic kidney disease, advanced malignancy, or hepatic failure), coronary angiography should be potentially delayed or not performed. Table 3 demonstrates the various strategies that may be employed in patients with NSTEMI.

Antithrombotic Therapy in Patients with NSTEMI

Many of the antithrombotic treatment strategies used in the catheterization laboratory are similar between patients with NSTEMI and STEMI presentations. Upon presentation to the emergency department or diagnosis of NSTEMI, the patient should be loaded with 325 mg non-enteric coated aspirin. Patients should then be loaded with clopidogrel 600 mg (300 mg for patients >75 years old), prasugrel 60 mg, or ticagrelor 180 mg. If the patient was already taking clopidogrel prior to diagnosis of NSTEMI, the patient should be reloaded with clopidogrel prior to undergoing coronary angiography. Although the guidelines do not recommend for or against reloading of ticagrelor or prasugrel prior to coronary angiography, it is generally advised to reload these antiplatelet agents if the patient was already taking them, given the rates of medication noncompliance.

It is a Class IIb recommendation to administer a glycoprotein IIb/IIIa inhibitor, such as eptifibatide or tirofiban, in addition to dual antiplatelet therapy for high risk patients treated with an early invasive strategy. Unfractionated heparin, enoxaparin, and bivalirudin all receive Class I recommendations for use during coronary angiography in patients with NSTEMI. Given the evidence for increased risk of catheter thrombosis during coronary angiography when fondaparinux is used as the sole anticoagulant, fondaparinux is not recommended for use during coronary angiography.²³
Access Considerations

As mentioned in the previous section on access considerations, the literature on the benefit of transradial access in patients with NSTEMI is somewhat contradictory. However, several trials have demonstrated reduction in bleeding and vascular complications with the use of transradial access in patients with NSTEMI (Table 1).

Type of Stent

Although the duration of P2Y12 inhibitor therapy has been longer with drug eluting stents than bare metal stents in clinical trials, data with current generation drug eluting stents show similar or lower rates of stent thrombosis with drug eluting stents than with bare metal stents. Therefore, current guidelines recommend routine use of drug eluting stents for patients with NSTEMI and STEMI.¹¹

Multivessel PCI

Patients with NSTEMI who have undergone multivessel PCI have not demonstrated an increased risk of major adverse cardiac events when compared with patients who underwent culprit artery only PCI.²⁴,²⁵ Additionally, patients with NSTEMI who underwent multivessel PCI did not have an increased risk for subsequent revascularization. Multivessel PCI at the time of coronary angiography for NSTEMI carries a Class IIb recommendation.

If the patient is found to have left main or multivessel disease requiring CABG at the time of coronary angiography, aspirin should be continued and P2Y12 inhibitor therapy should be discontinued. It is a Class I indication to discontinue clopidogrel and ticagrelor for at least five days and prasugrel for seven days prior to elective CABG, although it may be reasonable to proceed with CABG as early as three days after stopping ticagrelor.²⁶ If patients have ongoing anginal symptoms or are hemodynamically unstable, there is a Class IIb recommendation to perform CABG earlier than five days after discontinuation of clopidogrel and ticagrelor or seven days after prasugrel.

Care for the ACS Patient in the Coronary Care Unit

Care for the patient with ACS prior to and immediately after coronary angiography and PCI should include initiating evidence-based medications and education about lifestyle and medication changes. Either during coronary angiography or after PCI, the patient will undergo a ventriculogram in the catheterization laboratory or an echocardiogram with documentation of left ventricular ejection fraction. An assessment of comorbid risks should be examined, including evaluation of hemoglobin A1c. Close monitoring for hemodynamic instability and electrical instability on telemetry should be maintained.

Several medications should be considered and initiated early during the hospital course in the cardiac intensive care unit. If the patient has a left ventricular ejection fraction <40%, hypertension, diabetes, or chronic kidney disease, an angiotensin converting enzyme (ACE) inhibitor should be initiated and titrated up early during the hospital course. If there is a prior history of ACE inhibitor intolerance, angiotensin receptor blockers may be considered instead, using either valsartan or candesartan. Beta-blocker therapy should also be initiated early in the hospital course, as long as the following signs or features are not present: cardiogenic shock, low-output state, significantly prolonged PR interval, or second or third degree heart block. For patients with known heart failure that is stable, the use of metoprolol succinate, carvedilol, or bisoprolol is recommended. Unless the patient has previously been intolerant to statins, high-intensity statins, including atorvastatin 40-80 mg daily or rosuvastatin 20-40 mg daily, are recommended. For the patient with ongoing complaints of chest discomfort after PCI without concern for worsening ischemia, long-acting nitrates and calcium channel blockers can be used to help control these symptoms. Importantly, a focus on mitigating risk factors, including tobacco

<table>
<thead>
<tr>
<th>Type of Stent</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare metal stents</td>
<td>Standard stents used in most cases</td>
</tr>
<tr>
<td>Drug eluting stents</td>
<td>Stents coated with medications to prevent restenosis</td>
</tr>
<tr>
<td>Percutaneous coronary intervention (PCI)</td>
<td>Procedure to open blocked arteries</td>
</tr>
<tr>
<td>Coronary artery bypass grafting (CABG)</td>
<td>Surgical procedure to bypass blocked arteries</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Care for the ACS Patient in the Coronary Care Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Care for the patient with ACS prior to and immediately after coronary angiography and PCI should include initiating evidence-based medications and education about lifestyle and medication changes. Either during coronary angiography or after PCI, the patient will undergo a ventriculogram in the catheterization laboratory or an echocardiogram with documentation of left ventricular ejection fraction. An assessment of comorbid risks should be examined, including evaluation of hemoglobin A1c. Close monitoring for hemodynamic instability and electrical instability on telemetry should be maintained. Several medications should be considered and initiated early during the hospital course in the cardiac intensive care unit. If the patient has a left ventricular ejection fraction <40%, hypertension, diabetes, or chronic kidney disease, an angiotensin converting enzyme (ACE) inhibitor should be initiated and titrated up early during the hospital course. If there is a prior history of ACE inhibitor intolerance, angiotensin receptor blockers may be considered instead, using either valsartan or candesartan. Beta-blocker therapy should also be initiated early in the hospital course, as long as the following signs or features are not present: cardiogenic shock, low-output state, significantly prolonged PR interval, or second or third degree heart block. For patients with known heart failure that is stable, the use of metoprolol succinate, carvedilol, or bisoprolol is recommended. Unless the patient has previously been intolerant to statins, high-intensity statins, including atorvastatin 40-80 mg daily or rosuvastatin 20-40 mg daily, are recommended. For the patient with ongoing complaints of chest discomfort after PCI without concern for worsening ischemia, long-acting nitrates and calcium channel blockers can be used to help control these symptoms. Importantly, a focus on mitigating risk factors, including tobacco.</td>
</tr>
</tbody>
</table>
use, uncontrolled type II diabetes, and medication noncompliance is important early in the hospital course. Counselors should meet to discuss strategies for smoking cessation with the patient, including consideration of the use of varenicline. A diabetes management team might be helpful to implement strategies to reduce cardiovascular risk related to diabetes. If the patient is underinsured, lacks financial resources, or is considered higher risk for medication nonadherence, it may be helpful for social workers to meet with the patient and family to discuss ways to obtain medications or obtain hospital or pharmaceutical support for medications. The importance of outpatient follow-up and cardiac rehabilitation should be emphasized to the patient. Though these discussions may occur once the patient has moved out of the coronary care unit, it is critical that they begin early and are emphasized multiple times during the post-ACS period.

References

22. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Jr., Ganiats TG, Holmes DR, Jr., et al. 2014 AHA/ACC Guideline for the Management of

DEVELOPING OUTSTANDING POST-DISCHARGE CARE PROGRAMS FOR ACUTE CORONARY SYNDROME

Tracy E. Macaulay, PharmD
Associate Professor of Pharmacy
University of Kentucky College of Medicine
Gill Heart & Vascular Institute
University of Kentucky Healthcare
Lexington, KY

Khaled M. Ziada, MD
Gill Foundation Professor of Interventional Cardiology
Director - Cardiac Catheterization Laboratories & Interventional Fellowship Program
Clinical Chief of Cardiology, Division of Cardiovascular Medicine
University of Kentucky Healthcare
Lexington, KY

Objectives
1. Discuss the key components of discharge preparation for patients with acute coronary syndrome (ACS).
2. Describe how the use of various tools (e.g., Teach-back technique, Morisky assessment, discharge medication schedules) can enhance the individualization and effectiveness of the discharge process.
3. List the important elements of post-discharge care and the goals of an early transition-of-care clinic visit for ACS patients.
4. Discuss the importance of identifying and resolving medication-related problems prior to, during, and after discharge, particularly for patients with ACS.

Introduction
The inpatient management of acute coronary syndrome (ACS) has become increasingly concise with the adoption of earlier invasive approaches and shorter length of stay. According to the National Cardiovascular Data Registry, the median length of stay following primary percutaneous coronary intervention for ST-elevation myocardial infarction is now ≤ 2 days. Implementation of algorithmic ACS care with programs like “Get With the Guidelines” does not reduce adherence to evidence-based measures, even with shorter length of stay.¹ Thus, the window of time available to provide the patient and caregivers with education and elements of care coordination is smaller. Additional factors contributing to transition challenges in ACS include the complexity of the medication regimen, dietary and lifestyle modification recommendations, tobacco dependence treatment, and management of previously unidentified or uncontrolled comorbidities (such as hypertension or diabetes). The objective of ACS therapy is to restore function to normal or near normal levels, reduce risk of subsequent events and facilitate secondary prevention through aggressive control of risk factors.²

Therefore, in addition to optimizing triage and emergency/acute care, achieving excellent outcomes for ACS patients also depends on providing a safe transition to the post-acute care setting by establishing enhanced discharge processes and ensuring adequate outpatient planning and support. Key elements to providing a successful ACS discharge and establishing best practices in outpatient care will be addressed here (Figure 1). These elements form the basis for the ACS transition-of-care program adopted at the University of Kentucky (UK) Medical Center, named KATS PLEDGE (KY Adherence to Pharmacotherapy System: Program to Lead, Educate and Deliver Goal-Directed Care Effectively), which will be used here as an example.

Discharge Preparation
To provide optimal continuity of care for ACS, discharge planning must begin on admission. Existing or newly diagnosed comorbid conditions, social concerns and other factors that require more complex discharge planning can usually be identified early and hence can be addressed sooner rather than later. Accurate medication history and reconciliation, assessment of medication adherence, prescribing of evidence-based and streamlined pharmacotherapy, multi-level effective communication and patient education about disease and therapy are key elements of discharge preparation.

An accurate and complete medication history can provide insight into previous history and medication allergies or intolerances and prevent unnecessary medication changes. For example, it may be counter-productive and confusing to change a high-potency statin or an angiotensin receptor blocker from one brand to another if patients confirm their home medications are well tolerated and affordable. It is also important to have an accurate previous home regimen to educate patients on discontinued medications or changed doses upon discharge. Institutions use a multitude of ap-
Adherence is a complex behavior and it is a well-documented problem in cardiovascular disease management. As the complexity of a medical regimen increases, adherence declines. It is not unusual for a patient with newly diagnosed ACS to be admitted on no medications and discharged soon thereafter with “polypharmacy.” Therefore, it is important to consider the patient’s health literacy and past medication adherence to identify and address barriers to adherence. A simple three-question tool can rapidly identify inadequate functional health literacy: 1) How often do you have difficulty understanding written information about your medical condition? 2) How often do you have someone help you read written medical information? 3) How confident are you at filling out medical forms by yourself? The 8-question MORISKY assessment (Table 1) has also been validated as a tool to evaluate medication adherence. Utilizing these tools allows improved understanding of a patient’s health literacy and barriers to adherence, which can help with providing appropriate targeted education. Both disease and medication education should begin immediately and be reinforced throughout the hospitalization and into post-acute care settings. Understanding and improving patients’ perceptions about taking their cardiac medications will help to ensure that patients will take the evidence-based regimens provided.

Many resources exist to help health systems provide evidence-based therapy. Education regarding and systematic implementation of current treatment guidelines, reviewing and updating practices based on cutting edge clinical trials, solidification of practice through development of hospital protocols and pathways, as well as development of multidisciplinary patient care teams can help ensure that patients are prescribed the best possible pharmacologic and non-pharmacologic therapies. Although implementing standardized protocols is useful in adhering to evidence-based approaches and reducing variation, it is important to understand and consider the uniqueness of every patient’s clinical situation and to adjust accordingly.

Communication between the medical team, the patient and other caregivers and providers is of critical importance. Changes made to previous home therapy should be clearly relayed to all parties (patient, caregivers, primary care and referring providers, home pharmacists). Communication can prevent unnecessary confusion and improve adherence and continuity. Discontinuing old prescriptions at the patient’s pharmacy will prevent drug interactions, duplication of therapy, and again improve continuity.

Patient education should also begin early in the hospital stay. Armed with an understanding of the patient’s health literacy, and given the widespread availability of multimedia tools, education can be truly dynamic. For example, at UK HealthCare, the patient’s disease (e.g., atherosclerosis, risk factors, ACS) and therapy (e.g., coronary stenting, lipid lowering and antiplatelet agents) are explained to patients utilizing short video clips displayed on tablet computers in the preparation and recovery area of the catheterization laboratory. Medication education is provided each time the patient is given a medication to take, through tablet videos as well as written communication, which is reviewed for optimal local health literacy levels. More comprehensive medication education is provided prior to discharge and is described in more detail later.

Enhanced Discharge Process

Enhanced discharge processes are intended to facilitate patient education, improve effective communication and ensure safe transition of care. Several comprehensive tools have been shown to improve multiple aspects of patient care, including patient medication understanding, satisfaction, and adherence, and in some cases these tools have been shown to improve outcomes by reducing readmission. One such tool is Boston University’s Project Re-Engineered Discharge (Project RED), which has been widely imitated. Armed with accurate incoming medication history and reconciliation on admission, facilitation of comprehensive discharge reconciliation is a fundamental component of an enhanced discharge process. At UK HealthCare, ACS patients’ discharge medication reconciliation is facilitated by cardiovascular clinical pharmacists and finalized by discharging physicians or advanced practice providers. This double check provides much needed redundancy given the quick patient turn over and multiple medication changes. Providing patients with user friendly tools, such as discharge medication schedules and written instructions regarding which medications have been changed or discontinued is vitally important (Figure 2). Other tools, such as pill boxes and discharge prescription services, may further aid patients and improve adherence.

TABLE 01 Modified 8-Item MORISKY Assessment

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do you sometimes forget to take your medications?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Over the past two weeks, were there any days you did not take your medicine?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Have you ever cut back or stopped taking your medication without telling your doctor because you felt worse when you took it?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. When you travel or leave home, do you sometimes forget to bring along your medications?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Did you take your medication yesterday?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. When you feel like your disease is under control, do you stop taking your medicine?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Do you ever feel hassled about sticking to your medication regimen?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. How often do you have difficulty remembering to take your medicine?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Although patient and caregiver education should begin early and have built in redundancy, discharge education remains extremely important. As stated earlier, this should be in the context of a more comprehensive discharge process aimed at ensuring patient involvement, adherence and safe transition from inpatient to outpatient status. Aspects related to diet, exercise and risk factor control education are typically provided by cardiovascular nurses and dedicated educators and/or nutritionists at any opportunity during the typically short hospital stay. At UK Healthcare, education related to pharmacotherapy is provided by cardiology clinical pharmacists or their extenders (pharmacy interns, students, and residents). Pharmacists are uniquely trained to provide education to patients on their medications, and their interventions have been shown to increase identification of medication errors and improve patient adherence. Although resource intensive, it is important that pharmacist resources be allocated to patient education for particularly high-risk patient populations, such as those with ACS. Any medication education session should include review of medication indications (e.g., patients who take statins post-ACS are less likely to experience another myocardial infarction), potential adverse drug reactions and importance of adherence (particularly with dual-antiplatelet therapy [DAPT]). The “teach-back” technique (also referred to as “show me”) is an evidence-based education process that ensures patients have gained understanding of vital information. It is not meant to “quiz” the patient, but with practice and dedication to mastering this approach it may be employed naturally to patient interactions. In general, patients are simply asked to explain, in their own words, what they need to know or how to take a medication. This technique provides a mechanism for confirming either proper understanding or miscommunication or suboptimal understanding that requires re-education. Essential elements of this evidence-based education technique and the tools to learn and implement it can be found at teachbacktraining.org (Table 2).

An additional component of enhanced discharge processes that has been fully implemented at UK HealthCare is a dedication to ACS patients leaving with all their medications in hand via discharge prescription services. This is particularly important for patients prescribed new DAPT, since it has been well demonstrated that delays in filling contribute to increased cardiovascular morbidity and mortality. In the case of clopidogrel, it has been shown that at least 1 in 6 patients delays filling their prescription with an average of...
the time of hospital discharge and completion of discharge reconciliation (Figure 3). It is advisable that institutions that provide this service emphasize effective patient communication regarding refills and/or transfer of prescriptions to the previously established outpatient pharmacy. Such education should be provided both verbally and in written instructions. In patients with particularly low literacy, mail order service or pro-active communication with their community pharmacist to transfer prescriptions may be helpful.

Finally, care coordination is a vital component of the optimal discharge process. Providing patients with adequate information about follow up plans (e.g., appointment dates and times, follow up locations, any referrals, home resources, study results) prior to discharge can help ensure continuity post-discharge. Care coordination should also include ensuring adequate documentation and communication of care plans between inpatient and outpatient care providers, as well as specialists, primary care providers, pharmacy providers, etc.

One important aspect of coordination is encouraging and facilitating enrollment in cardiac rehabilitation programs. Evidence of the valuable role of rehabilitation programs is plentiful and it is a recommendation of the national guidelines as well as a quality metric for ACS care.²,¹⁵ In tertiary care centers, where ACS patients are frequently transferred from community and/or rural hospitals, it is important to identify and refer patients to cardiac rehabilitation centers closest to their residence. Providing patients with such referrals and contact information for follow up is an important component of the care coordination process.

At UK HealthCare, the inpatient clinical pharmacists and nurse discharge coordinators leave a detailed note in the electronic record documenting patient-specific pharmacotherapy discussions as well as information obtained during the discharge counseling session. The consistent and thorough documentation facilitates improved post-discharge care.

Post-Discharge Care

Individual components of the post-acute care follow up have been widely employed with mixed clinical outcome findings. This is especially true of the 24-48 hours post-discharge phone call. Although a scripted and appropriately managed call can provide an opportunity to answer patient questions, ensure prescriptions have been filled (if discharge prescriptions were not provided), and possibly prevent early readmission by reassurance of clinical status, the mixed results make full implementation of this single intervention challenging for resource justification. The success of follow up calls can be improved when combined with home visits and/or early discharge face-to-face clinic visits. At UK HealthCare, all patients are called within 48 hours by discharge nurses based on care units. Recently, UK started a home visit program following discharge, which leverages the outreach of the home hospice teams, allowing them to

TABLE 02

<table>
<thead>
<tr>
<th>Ten Elements of Competence for Using Teach-Back Effectively</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Use a caring tone of voice and attitude.</td>
</tr>
<tr>
<td>2. Display comfortable body language and make eye contact.</td>
</tr>
<tr>
<td>3. Use plain language.</td>
</tr>
<tr>
<td>4. Ask the patient to explain back, using their own words.</td>
</tr>
<tr>
<td>5. Use non-shaming, open-ended questions.</td>
</tr>
<tr>
<td>6. Avoid asking questions that can be answered with a simple yes or no.</td>
</tr>
<tr>
<td>7. Emphasize that the responsibility to explain clearly is on you, the provider.</td>
</tr>
<tr>
<td>8. If the patient is not able to teach back correctly, explain again and re-check.</td>
</tr>
</tbody>
</table>
FIGURE 03 Example Acute Coronary Syndrome (ACS) Discharge Prescription Form Used by UK HealthCare to Ensure Accurate Prescribing of Evidence-Based Therapies and Discharge Prescription Services to All ACS Patients

Please Fax Completed Form to CRP (Meds-to-Beds) 323-5622
Faxed by (initials): on / /20_ @

Patient name: __________________________ DOB: __________________
MRN: __________________

KATS PLEDGE

KY Adherence to pharmacoTherapy System: Program to Lead, Educate, and Deliver Goal-directed care Effectively

This is a legal prescription form. Please complete and sign this form for ALL but ONLY patients who have received Percutaneous Coronary Intervention.

Gill Heart Institute
800 S. Rose St., Suite G100
Lexington, KY 40536
Phone: 859-323-xxxx
Fax: 859-323-xxxx

☐ John Doe, MD KY License #00000
☐ Jane Doe, MD KY License #11111
☐ John Smith, MD KY License #22222
☐ Jane Smith, MD KY License #33333
☐ John Rich MD KY License #44444
☐ Jane Rich, MD KY License #55555

*Check the interventional cardiologist above and add your prescriber information below the signature
Core secondary prevention medicines will be filled and delivered to patient free of charge at time of hospital discharge.

Select below (unless contraindication):
☐ Aspirin 81 mg po daily #30, 11 refills

Select one below:
☐ Ticagrelor 90 mg po twice daily #60, 11 refills
☐ Clopidogrel 75 mg po daily #30, 11 refills

Select one below (and appropriate dose):
☐ Atorvastatin 80 mg po daily at bedtime #30, 11 refills
☐ Atorvastatin 20 mg po daily at bedtime #30, 11 refills (lower dose option for patients >75 yo)
☐ Pravastatin 80 mg po daily at bedtime #30, 11 refills

Select one below (and appropriate dose):
Metoprolol tartrate (Lopressor):
☐ 12.5 mg po twice daily #60, 11 refills
☐ 25 mg po twice daily #60, 11 refills
☐ 50 mg po twice daily #60, 11 refills
☐ 100 mg po twice daily #60, 11 refills

Carvedilol:
☐ 3.125 mg po twice daily #60, 11 refills
☐ 6.25 mg po twice daily #60, 11 refills
☐ 12.5 mg po twice daily #60, 11 refills
☐ 25 mg po twice daily #60, 11 refills

Select if indicated: DMII, LVSO (EF<40%), HTN or CRI (and appropriate dose):
Lisinopril:
☐ 2.5 mg po daily #30, 11 refills
☐ 5 mg po daily #30, 11 refills
☐ 10 mg po daily #30, 11 refills
☐ 20 mg po daily #30: 11 refills
☐ 40 mg po daily #30, 11 refills

Select if needed:
☐ SL Nitroglycerin 0.4 mg, place one tablet under tongue as needed for chest pain, #25, 3 refills

Additional medications may be electronically prescribed. Those medications will be the financial responsibility of the patient and not covered under the KATS PLEDGE program.

Delivery service available for prescriptions received M-F 8:00am-7:00pm, Sat 9:00am-4:30pm, Sun 1:00pm - 4:30pm. If you have questions about delivery, please call the Meds-to-Beds team at 859-218-xxxx.

MD/APP Signature (print & sign): __________________________ Date/Time: ____________
KY Lic #:
Pager #: __________________

PDF available online: www.emcreg.org/continuum
double as transition-of-care nurses after receiving training in specific diagnoses that are known for higher readmission rates (such as heart failure and ACS). However, the majority of patient support occurs at an early (within seven days) face-to-face transition-of-care clinic visit with a cardiovascular clinical pharmacist.

In the UK care model, the cardiovascular clinical pharmacist is credentialed and privileged to provide comprehensive medication therapy management and patient education on behalf of the interventional cardiologists. The office visit provides many elements of support for the patient with a clear emphasis on education and medication therapy management. Table 3 provides an overview of services provided in this clinic visit. Patient encounters last an average of 45 minutes. If a clinical concern is identified (e.g., procedural complication or serious adverse event), immediate support is provided by interventional cardiologists and/or advanced practice providers.

Given that a large portion of early and preventable readmissions are medication-related, the follow up at UK HealthCare is pharmacy-driven and, although multifaceted, focuses largely on identification and resolution of medication-related problems (MRP). MRPs are defined as undesirable events experienced by patients that involve or are suspected to involve their drug therapy. Further categorization of MRPs and corresponding examples that are specific to ACS are shown in Table 4. For example, it is important to reassure patients who feel dyspneic after beginning ticagrelor therapy that this side effect frequently subsides within days and that the benefits of effective platelet inhibition outweigh the transient self-limited side effect. When angiotensin converting enzyme inhibitors are started in the hospital in patients with chronic kidney disease, it is important to check renal function and electrolytes within 7-10 days.

Care coordination and appropriate handover of patient care is also provided in the ACS transitional care management (TCM) clinic at UK. Ensuring that patients have follow up with their primary care providers, are established with cardiologists, have been referred for cardiac rehabilitation, and have care plans for co-morbidity management, is vital to their success. Also, education with teach-back on lifestyle modifications ensures appropriate emphasis on all aspects of secondary prevention.

<table>
<thead>
<tr>
<th>Table 03</th>
<th>Activities in Acute Coronary Syndrome Transitional Care Management Clinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Description</td>
</tr>
<tr>
<td>Hospitalization Review</td>
<td>Provide patient/family clarity on events, interventions, future directions (e.g., staged percutaneous coronary intervention)</td>
</tr>
<tr>
<td>General Assessment at Home</td>
<td>Identify angina or heart failure symptoms and/or medication-related problems</td>
</tr>
<tr>
<td>Medication Reconciliation:</td>
<td>Clarify home medications not previously addressed, re-direct on education of new medications (indications, potential adverse drug experiences, importance of adherence), update accurate list in electronic medical record, provide patient a new updated list/schedule, identify and address medication-related problems</td>
</tr>
<tr>
<td>Patient Assessment: vials, medication related problems, catheter access site, etc.</td>
<td>Adjust medications for blood pressure or heart rate (high or low), assess heart failure symptoms (adjust diuretic, medication titration), identify adverse drug experiences and adjust therapy</td>
</tr>
<tr>
<td>Laboratory Assessment</td>
<td>Monitor pharmacotherapy (serum creatinine, potassium, etc.) and/or follow up needs from inpatient (serum creatinine, hemoglobin/hematocrit, thyroid stimulating hormone)</td>
</tr>
<tr>
<td>Tobacco Dependence Education</td>
<td>Re-assess willingness to quit, adjust supportive pharmacotherapy, referral</td>
</tr>
<tr>
<td>Cardiac Rehabilitation</td>
<td>Confirm or make referral, discuss program goals</td>
</tr>
<tr>
<td>Schedule Re-assessment of Left Ventricle</td>
<td>Follow up with Cardiology/Electrophysiology for implantable cardioverter-defibrillator (ICD) placement if necessary</td>
</tr>
<tr>
<td>Dietary Invention</td>
<td>Discuss role of sodium in hypertension and low-sodium/low-fat diets, as well as plant-based and Mediterranean diets</td>
</tr>
<tr>
<td>Activity Education</td>
<td>Discuss return to work, exercise, sex, etc.</td>
</tr>
<tr>
<td>Follow Up Planning</td>
<td>Establish long-term cardiologist, arrange primary care physician follow up (communication), refer for specialists as needed (e.g., endocrinology, psychology, social worker, tobacco treatment specialists, nephrologist)</td>
</tr>
</tbody>
</table>
Conclusion

Providing optimal continuity for complex disease states, such as ACS, has been extensively evaluated. Individual interventions, such as follow up phone calls or medication reconciliation, have resulted in variable success. However, when multiple interventions are combined and multidisciplinary team members participate, outcomes are consistently improved. Implementation of the components discussed here, which focus on individualizing education, identifying and eliminating barriers to adherence and preventing medication-related problems throughout the hospital stay and in the post-acute care setting, can ensure that patients have the best chance at successful outcomes.

References

<table>
<thead>
<tr>
<th>TABLE 04</th>
<th>Classification of Medication-Related Problems (MRP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medication-Related Problem</td>
<td>Description/Example</td>
</tr>
<tr>
<td>Untreated medical condition</td>
<td>Patient meets criteria for aldosterone antagonist but not prescribed at discharge</td>
</tr>
<tr>
<td>Patient taking unnecessary drug (medication without indication)</td>
<td>Patient prescribed proton pump inhibitor without clear indication</td>
</tr>
<tr>
<td>Incorrect medication for patient’s condition or age</td>
<td>Patient has low ejection fraction but is not on an evidence-based beta-blocker</td>
</tr>
<tr>
<td>Patient not taking medication correctly</td>
<td>Patient taking ticagrelor or carvedilol once daily</td>
</tr>
<tr>
<td>Correct medication but dose too low (subtherapeutic)</td>
<td>Patient started on low-dose angiotensin converting enzyme inhibitor for post-acute coronary syndrome care and hypertension, but blood pressure remains uncontrolled</td>
</tr>
<tr>
<td>Correct medication but dose too high (overdosage)</td>
<td>Patient on apixaban for atrial fibrillation but has low glomerular filtration rate and requires dose reduction</td>
</tr>
<tr>
<td>Adverse drug reaction</td>
<td>Patient experiencing rash with P2Y12 inhibitor or myopathy with statin therapy</td>
</tr>
<tr>
<td>Drug interactions (with drug or food)</td>
<td>Patient on phenytoin for seizures and prescribed ticagrelor for acute coronary syndrome (an absolutely contraindicated drug interaction)</td>
</tr>
<tr>
<td>Failure to receive a necessary medication</td>
<td>Patient recommended to take an over-the-counter proton pump inhibitor for gastrointestinal prophylaxis and has not picked up at pharmacy</td>
</tr>
</tbody>
</table>

Continuing Medical Education Post-Test Answer Form and Evaluation

CONTINUUM OF CARE FOR ACS: OPTIMIZING TREATMENT OF STEMI AND NSTE-ACS

Based on the information presented in this monograph, please choose one correct response for each of the following questions or statements. Record your answers on the answer sheet found on the last page. To receive Category I credit, complete the post-test and record your responses on the following answer sheet and complete the evaluation. A passing grade of 80% is needed to receive credit.

TEST ALSO AVAILABLE ONLINE: www.emcreg.org/testing
*Immediate CME Certificate online with passing grade.

Hardcopy test can be returned by E-mail, Fax or Mail using the included return envelope. See following page for information. Please return the CME no later than March 1, 2019.

QUESTIONS:

1. Which of the following measures results in the most significant decrease in first medical contact (FMC)-to-balloon times?
 A. Prehospital electrocardiogram (ECG)
 B. Prehospital cardiac catheterization laboratory (CCL) activation
 C. Prehospital administration of ticagrelor
 D. Prehospital ECG and prehospital CCL activation together

2. Which of the following patient/ECG characteristics is associated with an increased likelihood of NOT undergoing PCI in patients with STEMI?
 A. Bundle branch block
 B. White race
 C. Bradycardia
 D. Female gender

3. Administration of which of the following P2Y12 antagonists prior to CCL procedures has been shown to significantly reduce the combined primary end-point of death from any vascular cause, myocardial infarction or stroke, without an increased incidence of major bleeding:
 A. Clopidogrel
 B. Prasugrel
 C. Ticagrelor
 D. Abciximab

4. In order to achieve a FMC-to-device goal of ≤ 90 minutes, emergency medical services responsibilities include all of the following EXCEPT?
 A. ECG at the site of FMC
 B. Administration of a glycoprotein IIb/IIIa inhibitor
 C. Transportation of STEMI patient directly to a PCI-capable hospital
 D. Activation of the CCL

5. All of the following statements regarding STEMI systems of care are true EXCEPT?
 A. Local variations preclude a universal design.
 B. Guidelines must be continually updated based on re-examination of evidence.
 C. They decrease symptom-onset-to-balloon time.
 D. They improve population-wide patient outcomes

6. Which of the following is the preferred reperfusion method for patients with STEMI?
 A. Percutaneous intervention
 B. Fibrinolysis
 C. Percutaneous intervention after fibrinolysis
 D. Percutaneous intervention after a glycoprotein inhibitor

7. Which of the following antiplatelet agents is contraindicated in patients with a prior history of transient ischemic attack or stroke?
 A. Prasugrel
 B. Clopigogrel
 C. Ticagrelor
 D. All of the above

8. Which of the following antiplatelet agents resulted in a reduction in cardiac death at one year in patients treated for STEMI and NSTEMI?
 A. Prasugrel
 B. Clopigogrel
 C. Ticagrelor
 D. All of the above

9. A patient with which of the following is at risk for adverse outcomes with prolonged dual antiplatelet therapy (DAPT)?
 A. High ischemic risk
 B. DAPT score less than 2
 C. DAPT score greater than 2
 D. Diabetes

10. All of the following statements regarding the use of glycoprotein IIb/IIIa inhibitors for patients with acute coronary syndrome are true EXCEPT:
 A. They should be administered in the Emergency Department prior to patient transfer to the catheterization laboratory.
 B. They provide instant onset platelet inhibition.
 C. They are associated with an increased risk of bleeding.
 D. They should be followed by long term P2Y12 inhibitor therapy.

(Continued next page)
11. According to the European Society of Cardiology 2017 Guidelines, which of the following is recommended (Class I) for patients with STEMI?
A. Transradial access for percutaneous coronary intervention (PCI)
B. Multivessel PCI at the time of primary PCI
C. Aspiration thrombectomy prior to primary PCI
D. VerifyNow-P2Y12 testing

12. Which of the following medications is not recommended for use during coronary angiography?
A. Unfractionated heparin
B. Prasugrel
C. Bivalirudin
D. Fondaparinux

13. All of the following should be part of the care of an ACS patient immediately after PCI EXCEPT:
A. Measurement of hemoglobin A1c
B. Telemetry monitoring
C. Cardiac MRI
D. Beta-blocker therapy, unless contraindicated

14. According to the 2015 ACC/AHA/SCAI guidelines, multivessel PCI at the time of primary PCI may be considered (Class IIb) for STEMI patients in which of the following clinical situations?
A. Hemodynamically stable patient with STEMI
B. Patient with STEMI in cardiogenic shock
C. STEMI patient with glomerular filtration rate < 60 ml/min/1.73m²
D. None - it should always be performed at a later time

15. Which of the following is an appropriate management strategy for a patient with non-ST elevation myocardial infarction?
A. Delayed (25-72 hour) invasive therapy for a patient with a temporal change in troponin
B. Ischemia-guided therapy for a patient with a left ventricular ejection fraction <40%
C. Immediate (within two hours) invasive therapy for a low-risk troponin-negative female
D. Immediate (within two hours) invasive therapy for a patient with signs of heart failure

16. All of the following statements regarding discharge planning for patients with ACS are true EXCEPT:
A. Discharge planning should begin once the patient has stabilized.
B. Lack of medication adherence is a problem in cardiovascular disease management.
C. The inpatient team should contact the patient’s home pharmacist to discuss outpatient medication plans.
D. Medication education should take place every time the patient is administered a medication.

17. The Morisky tool can be used to:
A. Evaluate medication adherence
B. Identify inadequate functional health literacy
C. Identify medication related problems
D. Identify comorbid conditions

18. For patients with ACS, all of the following are key activities during a transition-of-care appointment EXCEPT:
A. Arrange cardiac rehabilitation appointment
B. Discuss smoking cessation and diet goals
C. Provide patient with discharge medications
D. Identify and address medication-related problems

19. At the University of Kentucky Medical Center, a discharge prescription service allows patients to leave the hospital with their discharge medications in hand. What percentage of patients choose to participate in this service?
A. 10%
B. 30%
C. 70%
D. 90%

20. All of the following statements regarding patient care during the discharge period are true EXCEPT:
A. Pharmacists’ interventions for patient education have been shown to increase identification of medication errors and improve patient adherence.
B. In the MI FREEE trial, providing the discharge medications to the study patients at no cost improved medication adherence and reduced overall patient costs.
C. The 24-48 hours post-discharge phone call has been shown to reduce early readmission.
D. Comprehensive discharge planning tools such as Boston University’s Project Re-Engineered Discharge (Project RED) have been shown to reduce early readmission.
Continuing Medical Education Post-Test Answer Form and Evaluation

TEST ALSO AVAILABLE ONLINE: www.emcreg.org/testing
*Immediate CME Certificate with passing grade online.

After you have read the monograph, carefully record your answers by circling the appropriate letter for each question on the CME ANSWER SHEET on this page and complete the evaluation questionnaire.

CME expiration date March 1, 2019

Return the answer sheet to:
EMCREG-International
Department of Emergency Medicine (ML 0769)
231 Albert Sabin Way
Cincinnati, OH 45267-0769
1-855-678-5061

OR FAX TO: (888) 823-5435 OR EMAIL TO: support@emcreg.org

Evaluation Questionnaire

1. On a scale of 1 to 5, with 5 being highly satisfied and 1 being highly dissatisfied, please rate this program with respect to:

<table>
<thead>
<tr>
<th></th>
<th>Dissatisfied</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall quality of material:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content of monograph:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other similar CME programs:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course objectives were met:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. What topics would be of interest to you for future CME programs?

__

3. Was there commercial or promotional bias in this monograph? □ YES □ NO
If YES, please explain:

__

4. How long did it take for you to complete this monograph?

Name (Please Print Clearly):

Email (Required):

Date of Birth: (Required): (mm/dd/yyyy)

E-mail and DOB required by CME office to generate CME certificates and create your identify for CME Office support.

Degree:
Specialty:

Academic Affiliation (if applicable):

Address:

City: State: Zip Code:

Telephone Number: () -

CME ANSWER SHEET

1. a b c d
2. a b c d
3. a b c d
4. a b c d
5. a b c d
6. a b c d
7. a b c d
8. a b c d
9. a b c d
10. a b c d
11. a b c d
12. a b c d
13. a b c d
14. a b c d
15. a b c d
16. a b c d
17. a b c d
18. a b c d
19. a b c d
20. a b c d

TEST ALSO AVAILABLE ONLINE: www.emcreg.org/testing
*Immediate CME Certificate with passing grade online.

CONTINUUM OF CARE FOR ACUTE CORONARY SYNDROME: OPTIMIZING TREATMENT FOR NSTE-ACS AND STEMI